Cardiovascular diseases, including myocardial infarction, are the leading cause of death worldwide for both men and women. Current therapies are limited by the restricted intrinsic regeneration capacity of the heart and by the lack of organs for transplantation. Human embryonic stem (hES) cells have the capacity to differentiate into various cell types, including vascular cells for forming de novo blood vessels to potentially repair the infarcted heart after myocardial infarction. Our goal was to improve cardiac function after myocardial infarction through hES-based cardiovascular tissue engineering. Our findings summarized: Improved cardiac performance, attenuated left ventricular dilation and decreased infarct size in infarcted rats can be attained after co-injection of hES-derived vascular cells and Thymosin β4 (Tβ4) in matrix metalloproteinase (MMP)-responsive hydrogels. Enhanced vascular cell adhesion, survival and organization can be achieved when coencapsulating bioactive peptide Tβ4 in MMP-responsive matrix in vitro. Directed cardiac differentiation of pluripotent cells can be influenced by matrix elasticity, adhesion ligand concentration and MMP-sensitivity in vitro. We first systematically modulated a three-dimensional (3D) MMP-responsive hydrogel, mimicking key biochemical characteristics of natural collagenous matrices, the major constituent of cardiac extracellular matrices. We found that these synthetic poly(ethylene glycol) (PEG)-based hydrogels can direct differentiation of pluripotent cardioprogenitors, using P19 embryonal carcinoma (EC) cells as a model, along a cardiac lineage in vitro. In order to systematically probe 3D matrix effects on P19 EC differentiation, matrix elasticity, MMP-sensitivity and the concentration of a matrix-bound RGDSP peptide, which is relevant in early cardiac developments were modulated. Soft matrices (E = 320 ± 64 Pa), mimicking the elasticity of embryonic cardiac tissue, increased the fraction of cells expressing the early cardiac transcription factor Nkx2.5 around 2-fold compared to embryoid bodies (EB) in suspension. In contrast, stiffer matrices (E = 4040 ± 420 Pa) decreased the number of Nkx2.5-positive cells significantly. Further indicators of cardiac maturation were promoted by ligation of integrins relevant in early cardiac development (α5β1, αvβ3) by the RGDSP ligand in combination with the MMP-sensitivity of the matrix, with a 6-fold increased amount of myosin heavy chain (MHC)-positive cells as compared to EB in suspension. This precisely controlled 3D culture system thus may serve as a potential alternative to natural matrices for engineering cardiac tissue structures for cell culture and potentially therapeutic applications. Neovascularization of infarcted tissue is a promising alternative strategy to potentially restoring lost contractile performance by cardiac cells. Vascular cells and cytokines are known to contribute to the protection of cardiomyocytes from death after myocardial in