Posterior-based Sparse Representation for Automatic Speech Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
We address the problem of keyword spotting in continuous speech streams when training and testing conditions can be different. We propose a keyword spotting algorithm based on sparse representation of speech signals in a time-frequency feature space. The t ...
Modern speech recognition has many ways of quantifying the misrecognitions a speech recognizer makes. The errors in modern speech recognition makes extensive use of the Levenshtein algorithm to find the distance between the labeled target and the recognize ...
This document describes a new continuous speech decoder, TODE, which is compatible with the Torch machine learning software library. A brief theory of speech recognition is presented followed by a detailed description of the architecture of TODE and the co ...
In this work, we propose different strategies for efficiently integrating an automated speech recognition module in the framework of a dialogue-based vocal system. The aim is the study of different ways leading to the improvement of the quality and robustn ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
In this paper we define and investigate a set of confidence measures based on hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) acoustic models. All these measures are using the neural network to estimate the local phone posterior probabilitie ...