Publication

GMM-based Handwriting Style Identification System for Historical Documents

Fouad Slimane
2014
Article de conférence
Résumé

In this paper, we describe a novel method for handwriting style identification. A handwriting style can be common to one or several writer. It can represent also a handwriting style used in a period of the history or for specific document. Our method is based on Gaussian Mixture Models (GMMs) using different kind of features computed using a combined fixed-length horizontal and vertical sliding window moving over a document page. For each writing style a GMM is built and trained using page images. At the recognition phase, the system returns log-likelihood scores. The GMM model with the highest score is selected. Experiments using page images from historical German document collection demonstrate good performance results. The identification rate of the GMM-based system developed with six historical handwriting style is 100%.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.