Publication

Automatic Feature Learning for Spatio-Spectral Image Classification With Sparse SVM

Devis Tuia
2014
Article
Résumé

Including spatial information is a key step for successful remote sensing image classification. In particular, when dealing with high spatial resolution, if local variability is strongly reduced by spatial filtering, the classification performance results are boosted. In this paper, we consider the triple objective of designing a spatial/spectral classifier, which is compact (uses as few features as possible), discriminative (enhances class separation), and robust (works well in small sample situations). We achieve this triple objective by discovering the relevant features in the (possibly infinite) space of spatial filters by optimizing a margin-maximization criterion. Instead of imposing a filter bank with predefined filter types and parameters, we let the model figure out which set of filters is optimal for class separation. To do so, we randomly generate spatial filter banks and use an active-set criterion to rank the candidate features according to their benefits to margin maximization (and, thus, to generalization) if added to the model. Experiments on multispectral very high spatial resolution (VHR) and hyperspectral VHR data show that the proposed algorithm, which is sparse and linear, finds discriminative features and achieves at least the same performances as models using a large filter bank defined in advance by prior knowledge.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.