Publication

Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes

Anna Kounina
2014
Article
Résumé

This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra- continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity. (C) 2014 Elsevier Ltd. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.