Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
Quantum algorithmIn quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Méthode de BartlettEn estimation spectrale, la méthode de Bartlett fournit un estimateur consistant de la densité spectrale de puissance. En pratique, obtenir un signal sur une durée infinie et l'acquérir sans bruit est impossible. C'est pourquoi on peut utiliser la fenêtre de Bartlett dans le but de lisser un périodogramme. Cette méthode est utilisée en physique, en ingénierie ainsi qu'en mathématiques appliquées. Les applications courantes de cette méthode sont l'analyse en réponse fréquentielle ainsi que l'analyse spectrale générale.
Software development effort estimationIn software development, effort estimation is the process of predicting the most realistic amount of effort (expressed in terms of person-hours or money) required to develop or maintain software based on incomplete, uncertain and noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets, investment analyses, pricing processes and bidding rounds. Published surveys on estimation practice suggest that expert estimation is the dominant strategy when estimating software development effort.
Diffractionthumb|Phénomène d'interférences dû à la diffraction d'une onde à travers deux ouvertures. La diffraction est le comportement des ondes lorsqu'elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par des phénomènes d'interférence. La diffraction s’observe avec la lumière, mais de manière générale avec toutes les ondes : le son, les vagues, les ondes radio, Elle permet de mettre en évidence le caractère ondulatoire d'un phénomène et même de corps matériels tels que des électrons, neutrons, atomes froids.
Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
ÉvaluationSelon Michel Vial, l'évaluation est le rapport que l'on entretient avec la valeur. L'homme est porteur de valeurs qu'il a reçu plus ou moins consciemment, qu'il convoque pour mesurer la valeur d'objets ou de produits, pour contrôler les procédures (vérifier leur conformité) ou encore interroger (rendre intelligible) le sens de ses pratiques : s'interroger sur la valeur, rendre intelligible les pratiques au moyen de l'évaluation située. Plus généralement, l'évaluation est un processus mental de l'agir humain.
HolographieL'holographie est un procédé d'enregistrement de la phase et de l'amplitude de l'onde diffractée par un objet. Ce procédé d'enregistrement permet de restituer ultérieurement une image en trois dimensions de l'objet. Ceci est réalisé en utilisant les propriétés de la lumière cohérente issue des lasers. Le mot « holographie » vient du grec holos (« en entier ») et graphein (« écrire »). Holographie signifie donc « tout représenter ».
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.