Geometric graph theoryGeometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013).
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Formule de CayleyEn mathématiques, et plus particulièrement en théorie des graphes, la formule de Cayley est un résultat sur les arbres du théoricien Arthur Cayley. Elle affirme le résultat suivant : Note : on parle aussi d'arbres décorés ou étiquetés pour dire que l'on identifie les sommets avec des couleurs, des nombres, etc. On parle aussi d'arbres de Cayley. Pour l'exemple illustré ci-contre, on obtient les résultats suivants, en appliquant le théorème : 1 arbre avec 2 sommets, 3 arbres avec 3 sommets, 16 arbres avec 4 sommets.
Codage de PrüferEn mathématiques, le codage de Prüfer est une méthode pour décrire de façon compacte un arbre dont les sommets sont numérotés. Ce codage représente un arbre de n sommets numérotés avec une suite de n-2 termes. Une suite P donnée correspond à un et un seul arbre numéroté de 1 à n. Les suites de Prüfer ont été utilisées pour la première fois par Heinz Prüfer pour démontrer la formule de Cayley en 1918. On peut aussi les utiliser en programmation informatique pour enregistrer la structure d'un arbre de façon plus compacte qu'avec des pointeurs.