Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Échangeur de chaleurUn échangeur de chaleur est un dispositif permettant de transférer de l'énergie thermique d'un fluide vers un autre sans les mélanger. Le flux thermique y traverse la surface d'échange qui sépare les fluides. L'intérêt du dispositif réside dans la séparation des deux circuits et dans l'absence d'autres échanges que la chaleur, qui maintient les caractéristiques physico-chimiques (pression, concentration en éléments chimiques...) de chaque fluide inchangées hormis leur température ou leur état.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Pompe à chaleurUne pompe à chaleur (PAC), aussi appelée thermopompe en français canadien, est un dispositif permettant de transférer de l'énergie thermique (anciennement « calories ») d'un milieu à basse température (source froide) vers un milieu à haute température (source chaude). Ce dispositif permet donc d'inverser le sens naturel du transfert spontané de l'énergie thermique. Selon le sens de fonctionnement du dispositif de pompage, une pompe à chaleur peut être considérée comme un système de chauffage, si l'on souhaite augmenter la température de la source chaude, ou de réfrigération, si l'on souhaite abaisser la température de la source froide.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Réseau de chaleurUn 'réseau de chaleur (également appelé réseau de chauffage urbain', réseau de chauffage à distance) est une installation distribuant à plusieurs utilisateurs clients de la chaleur produite par une ou plusieurs chaufferies, via un ensemble de canalisations de transport de chaleur (en polyéthylène ou en acier). La chaleur ainsi distribuée est principalement utilisée pour le chauffage des bâtiments et de l'eau chaude sanitaire ; certains réseaux fournissent également de la chaleur à usage industriel.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Asymptotic computational complexityIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation. With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation, such as the number of (parallel) processors.
Game complexityCombinatorial game theory measures game complexity in several ways: State-space complexity (the number of legal game positions from the initial position), Game tree size (total number of possible games), Decision complexity (number of leaf nodes in the smallest decision tree for initial position), Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position), Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large).