A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A new martensitic ODS alloy (nominal composition Fe-9Cr-1W-0.2Ti-0.3Y 2O3) has recently been developed at CEA Saclay to achieve the goals defined for GEN IV reactors. The aim of this paper is to present the main challenges involved in the manufacturing of ...
Toughness in Ceramic Matrix Composites (CMCs) is achieved if crack deflection can occur at the fiber/matrix interface, preventing crack penetration into the fiber and enabling energy-dissipating fiber pullout. To investigate toughening in nanoscale CMCs, d ...
For the design of SFRC members, the most fundamental material property is its post cracking residual tensile strength. When relying on physical models to describe structural behaviour under load, the material laws must first be accurately established. If t ...
VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-82013
Photodegradation of wood leads to discolouration and delignification, inducing damage to the cellular structure. This study is an investigation of the damage and loss of tensile strength of the cellulose fibres in spruce (Picea abies). Microtensile tests i ...
This paper reports on low-temperature and hermetic thin-film indium bonding for wafer-level encapsulation and packaging of delicate and temperature sensitive devices. This indium-bonding technology enables bonding of surface materials commonly used in MEMS ...
Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)is charact erized by aunique combination of extremely low permeability, high strength and deformability. Extensive R&D works and applications over the last 10 years have demonstrated that cast on sit ...
Carbon ion irradiation of carbon nanotube (CNT) bundles to enhance mechanical performance is investigated using classical molecular dynamics. Strategies to achieve inter-tube cross-linking for improved shear response without a drastic reduction in tensile ...
Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650750 degrees C. However, carbon ...
Nanofibers used in current ceramic matrix composites (CMCs) are usually wavy and of finite length. Here, a shear-lag model for predicting the tensile strength and work of fracture of a composite containing a "single matrix crack", as a function of all the ...
The tensile failure of unidirectional alumina fibre reinforced aluminium is studied in uniaxial loading along the fibre axis. The tensile strength is measured as a function of matrix yield strength, which is varied by varying the testing temperature, from ...