STRENGTH VERSUS GAUGE LENGTH IN CERAMIC-MATRIX COMPOSITES
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A model for predicting composite material strength degradation under elevated and high temperatures is proposed. This model is based on the morphology of the mixture of materials in different states. The degradation of resin-dominated shear strength can be ...
Here we present a processing route to produce multi-structured ceramic foams based on the combination of particle-stabilized foams with polymeric sponges to produce positive and negative templating structures. Polyester sponges are infiltrated with freshly ...
Nanofibers used in current ceramic matrix composites (CMCs) are usually wavy and of finite length. Here, a shear-lag model for predicting the tensile strength and work of fracture of a composite containing a "single matrix crack", as a function of all the ...
Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharin ...
A statistical model for fracture of aligned-whisker-reinforced metals was used to interpret tensile data of a TiB-reinforced titanium alloy. From this analysis, a TiB whisker strength of 8.0 GPa with a Weibull modulus of 2 was predicted. The analysis is co ...
Constitutive models for fiber-reinforced ceramic-matrix composites (CMCs) are needed to enable implementation of these materials in future engineering systems. One such constitutive model, developed by Genin and Hutchinson [1], is based on a phenomenologic ...
In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the p ...
By combining focused ion beam milling methods with microtesting techniques and finite element simulation we probe the strength of microscopic alumina phases that can be used as reinforcements in the production of metal matrix composite materials. We presen ...
This study contributes to our understanding of the damage evolution and fracture behaviour of two-phase materials that combine brittle particles with a ductile matrix. We focus on model composites roughly half-ceramic/half-metal that are produced in-house ...
The tensile strength and ductility of fiber-reinforced composites containing ductile metal fibers is studied using a multiscale approach and compared to the performance of an identical composite containing elastic fibers. A finite element model of stress r ...