Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
Two-dimensional (2D) materials have attracted increasing attention over the last decade owing to their remarkable mechanical, electrical and optical properties. Following the groundbreaking discovery of graphene, a plethora of other atomically-thin materia ...
Extensive machine-learning-assisted research has been dedicated to predicting band gaps for perovskites, driven by their immense potential in photovoltaics. Yet, the effectiveness is often hampered by the lack of high-quality band gap data sets, particular ...
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the end ...
Hydrated lipid bilayer membranes are crucial components of cells and organelles, serving as the outer boundary that separates the cellular components from the extracellular environment. Lipid membranes regulate their structures and functions by dynamically ...
Two-dimensional (2D) materials, in particular graphene and transition metal dichalcogenides (TMDC), have attracted great scientific interest over the last decade, revealing exceptional mechanical, electrical and optical properties. Owing to their layered n ...
Obtaining a precise theoretical description of the spectral properties of liquid water poses challenges for both molecular dynamics (MD) and electronic structure methods. The lower computational cost of the Koopmans-compliant functionals with respect to Gr ...
A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy-induced luminescence (STML), we are able to generate plasmonic light originating from inelastic tunneling processes that occ ...
The integration of new materials mediating light-matter interaction in nanoscale devices is a persistent goal in nanophotonics. One of these materials is Gallium phosphide, which offers an attractive combination of a high refractive index (n=3.05 at a wave ...
Thermal motion of a room-temperature mechanical resonator typically dominates the quantum backaction of its position measurement. This is a longstanding barrier for exploring cavity optomechanics at room temperature. In order to enter the quantum regime of ...