Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Within the global challenge of sustainable energy supply and greenhouse gas emissions mitigation, carbon capture and storage and the deployment of renewable resources are considered as promising solutions. In this study the production of ammonia mainly used in the fertilizer industry and responsible for around 2-3% of the world greenhouse gas emissions is analyzed. Considering natural gas and biomass as a resource and the option of CO2 capture and storage, different process configurations are systematically compared with regard to energy, economic and environmental considerations. A consistent thermo-environonomic optimisation approach combining flowsheeting, process integration techniques, economic performance evaluation, life cycle assessment and multi-objective optimisation is applied for the conceptual process design and competitiveness evaluation. It is highlighted that the quality of the process integration is a key factor for improving the performance by valorizing the heat excess through electricity cogeneration. Including CO2 mitigation in the ammonia production allows to reduce the emissions, but leads to a slight efficiency decrease due to the energy consumption for the CO2 compression. For the natural gas fed process yielding an energy efficiency around 65%, the overall life cycle emissions can be reduced to 0.79kgCO2/kgNH3 with CO2 capture compared to 1.6kgCO2/kgNH3 without capture. Considering the biogenic nature of the carbon in the biomass, the emissions drop to -1.79kgCO2/kgNH3 for the biomass process having an energy efficiency of 50%. The economic competitiveness highly depends on the resource price and the introduction of a carbon tax. This study reveals the potential of the decarbonisation of the fertilizer industry. This article is protected by copyright. All rights reserved
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier