Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existin ...
Poor decisions and selfish behaviors give rise to seemingly intractable global problems, such as the lack of transparency in democratic processes, the spread of conspiracy theories, and the rise in greenhouse gas emissions. However, people are more predict ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they recently arose in stochastic Galerkin finite element discretizations and isogeometric analysis. In th ...
In generalized linear estimation (GLE) problems, we seek to estimate a signal that is observed through a linear transform followed by a component-wise, possibly nonlinear and noisy, channel. In the Bayesian optimal setting, generalized approximate message ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
In quantum many-body systems, the existence of a spectral gap above the ground state has far-reaching consequences. In this paper, we discuss “finite-size” criteria for having a spectral gap in frustration-free spin systems and their applications. We exten ...
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) ...