**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.

Publication# Traffic modeling, estimation and control for large-scale congested urban networks

Résumé

Part I of the thesis investigates novel urban traffic state estimation methods utilizing probe vehicle data. Chapter 2 proposes a method to integrate the collective effect of dispersed probe data with traffic kinematic wave theory and data mining techniques to model the spatial and temporal dynamics of queue formation and dissipation in arterials. The queue estimation method captures interdependencies in queue evolutions of successive intersections, and moreover, the method is applicable in oversaturated conditions and includes a queue spillover statistical inference procedure. Chapter 3 develops a travel time reliability model to estimate arterial route travel times distribution (TTD) considering spatial and temporal correlations between traffic states in consecutive links. The model uses link-level travel time data and a heuristic grid clustering method to estimate the state structure and transition probabilities of a Markov chain. By applying the Markov chain procedure, the correlation between states of successive links is integrated and the route-level TTD is estimated. The methods in Part I are tested with various probe vehicle penetration rates on case studies with field measurements and simulated data. The methods are straightforward in implementation and have demonstrated promising performance and accuracy through numerous experiments. Part II studies network-level modeling and control of large-scale urban networks. Chapter 4 is the pioneer that introduces the urban perimeter control for two-region urban cities as an elegant control strategy to decrease delays in urban networks. Perimeter controllers operate on the border between the two regions, and manipulate the percentages of transfer flows between the two regions, such that the number of trips reaching their destinations is maximized. The optimal perimeter control problem is solved by the model predictive control (MPC) scheme, where the prediction model and the plant (reality) are formulated by macroscopic fundamental diagrams (MFD). Chapter 5 extends the perimeter control strategy and MFD modeling to mixed urban-freeway networks to provide a holistic approach for large-scale integrated corridor management (ICM). The network consists of two urban regions, each one with a well-defined MFD, and a freeway, modeled by the asymmetric cell transmission model, that is an alternative commuting route which has one on-ramp and one off-ramp within each urban region. The optimal traffic control problem is solved by the MPC approach to minimize total delay in the entire network considering several control policies with different levels of urban-freeway control coordination. Chapter 6 integrates traffic heterogeneity dynamics in large-scale urban modeling and control to develop a hierarchical control strategy for heterogeneously congested cities. Two aggregated models, region- and subregion-based MFDs, are introduced to study the effect of link density heterogeneity on the scatter and hysteresis of MFD. A hierarchical perimeter flow control problem is proposed to minimize the network delay and to homogenize the distribution of congestion. The first level of the hierarchical control problem is solved by the MPC approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant is the subregion-based MFD, which is a more detailed model. At the lower level, a feedback controller tries to maximize the network outflow, by increasing regional homogeneity.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés (39)

MOOCs associés (25)

Publications associées (135)

Traffic flow

In mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.

Embouteillage (route)

vignette|Embouteillage à Los Angeles en 1953. Un embouteillage (« bouchon » ou « file » en Europe, « congestion » au Canada) est un encombrement de la circulation, généralement automobile, réduisant fortement la vitesse de circulation des véhicules sur la voie. right|thumb|Les départs ou les retours de vacances sont une des sources d'embouteillage (Algarve, Portugal, été 2005). Les mots embouteillage, bouchon et congestion (également utilisé en anglais) sont utilisés par analogie, tous ces mots étant auparavant employés dans d'autres domaines.

Fundamental diagram of traffic flow

The fundamental diagram of traffic flow is a diagram that gives a relation between road traffic flux (vehicles/hour) and the traffic density (vehicles/km). A macroscopic traffic model involving traffic flux, traffic density and velocity forms the basis of the fundamental diagram. It can be used to predict the capability of a road system, or its behaviour when applying inflow regulation or speed limits. There is a connection between traffic density and vehicle velocity: The more vehicles are on a road, the slower their velocity will be.

Intro to Traffic Flow Modeling and Intelligent Transport Systems

Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.

Intro to Traffic Flow Modeling and Intelligent Transport Systems

Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Alexandre Massoud Alahi, Kaouther Messaoud Ben Amor, Kathrin Grosse

Autonomous vehicles ought to predict the surrounding agents' trajectories to allow safe maneuvers in uncertain and complex traffic situations. As companies increasingly apply trajectory prediction in the real world, security becomes a relevant concern. In ...

Traffic congestion constitutes one of the most frequent, yet challenging, problems to address in the urban space. Caused by the concentration of population, whose mobility needs surpass the serving capacity of urban networks, congestion cannot be resolved ...

Nikolaos Geroliminis, Can Chen

Macroscopic fundamental diagrams (MFDs) have been widely adopted to model the traffic flow of large-scale urban networks. Coupling perimeter control and regional route guidance (PCRG) is a promising strategy to decrease congestion heterogeneity and reduce ...