Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Centralitéthumb|right|300px|Exemples de A) Centralité d'intermédiarité, B) Centralité de proximité, C) Centralité de vecteur propre, D) Centralité de degré, E) Centralité harmonique et F) Centralité de Katz sur le même graphe. En théorie des graphes et en théorie des réseaux, les indicateurs de centralité sont des mesures censées capturer la notion d'importance dans un graphe, en identifiant les sommets les plus significatifs.
Katz centralityIn graph theory, the Katz centrality or alpha centrality of a node is a measure of centrality in a network. It was introduced by Leo Katz in 1953 and is used to measure the relative degree of influence of an actor (or node) within a social network. Unlike typical centrality measures which consider only the shortest path (the geodesic) between a pair of actors, Katz centrality measures influence by taking into account the total number of walks between a pair of actors. It is similar to Google's PageRank and to the eigenvector centrality.
Centralité intermédiaireEn théorie des graphes et théorie des réseaux, la centralité intermédiaire, centralité d'intermédiarité ou intermédiarité est une mesure de centralité d'un sommet d'un graphe. Elle est égale au nombre de fois que ce sommet est sur le chemin le plus court entre deux autres nœuds quelconques du graphe. Un nœud possède une grande intermédiarité s'il a une grande influence sur les transferts de données dans le réseau, sous l'hypothèse que ces transferts se font uniquement par les chemins les plus courts.
Eigenvector centralityIn graph theory, eigenvector centrality (also called eigencentrality or prestige score) is a measure of the influence of a node in a network. Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. A high eigenvector score means that a node is connected to many nodes who themselves have high scores. Google's PageRank and the Katz centrality are variants of the eigenvector centrality.
Analyse des réseaux sociauxL'analyse des réseaux sociaux est une approche issue de la sociologie, qui a recours à la théorie des réseaux afin d'étudier les interactions sociales, en termes de réseau. La théorie des réseaux sociaux conçoit les interactions sociales en termes de nœuds et liens. Les nœuds sont habituellement les acteurs sociaux dans le réseau, mais ils peuvent aussi représenter des institutions, et les liens sont les interactions ou les relations entre ces nœuds.
Codage des caractèresvignette|alt=Carte rectangulaire beige clair avec dans le sens de la longueur 10 lignes constituées chacune d'une suite de chiffre identique, de 1 à 10. Des perforations verticales font disparaître certains de ces chiffres|Carte perforée à 80 colonnes, sur laquelle est codé le texte de programmation « CALL RCLASS (AAA, 21, NNC, PX3, PX4) ».
Caractère (informatique)En informatique, un caractère est . Comme en typographie, un caractère informatique peut représenter une lettre , une lettre majuscule, un chiffre, un signe de ponctuation ; mais aussi un espace, une tabulation, un retour à la ligne et quelques autres opérations spéciales (sonnerie, effacement, etc.) qui ne représentent pas des symboles (caractères de contrôle). En informatique, la notion de caractère est une notion qui dans le principe associe à un glyphe un nombre, de manière à dissocier la représentation physique du caractère de sa signification.
Social network analysis softwareSocial network analysis (SNA) software is software which facilitates quantitative or qualitative analysis of social networks, by describing features of a network either through numerical or visual representation. Networks can consist of anything from families, project teams, classrooms, sports teams, legislatures, nation-states, disease vectors, membership on networking websites like Twitter or Facebook, or even the Internet. Networks can consist of direct linkages between nodes or indirect linkages based upon shared attributes, shared attendance at events, or common affiliations.
Dynamic network analysisDynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time (modeled as a subset of the real numbers) to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices.