Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
The transverse relaxation rates R (2) = 1/T (2) of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due ...
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
Sensitivity in Nuclear Magnetic Resonance (NMR), especially in solid-state NMR, has always been a challenging and important issue and thus a motivation for new developments. The magnetic field B0, the gyromagnetic ratios of the observed nuclei, as well as ...
The first full protocol for nuclear magnetic resonance (NMR) crystallography (NMRX) using chemical shifts was developed a decade ago, and it combines experimental isotropic chemical shifts with crystal structure prediction (CSP) and with the calculation of ...
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transpo ...
Searching for optimal conditions during one- and multi-dimensional solid-state NMR experiments in high static fields may require spinning the sample at frequencies above 40 kHz. This implies challenging requirements for heteronuclear spin decoupling. We ha ...
In solids that are spinning about the magic angle, trains of short pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) allow one to improve the efficiency of the excitation of magnetization compared to rectangular puls ...
Solid-state NMR can provide information about the atomic level structure and dynamics of materials. It directly probes symmetry and structure at nuclear sites, and is especially useful for investigation of disordered or amorphous solids that lack long rang ...
In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on μs-ms time scales that can give rise to chemical exchange contributions to relaxation. In a heteronuc ...