Task-Dependent Signal Variations in EEG Error-Related Potentials for Brain-Computer Interfaces
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Spatial filtering is a widely used dimension reduction method in electroencephalogram based brain-computer interface systems. In this paper a new algorithm is proposed, which learns spatial filters from a training dataset. In contrast to existing approache ...
In order to permit a brain computer efficient communication, it is important to dispose of an efficient algorithm to decode the brain electrical activity. We will focus our attention on an algorithm based on microstates segmentation of the brain electrical ...
Brain imaging studies in man and single cell recordings in monkey have suggested that medial supplementary motor areas (SMA) and lateral pre-motor areas (PMA) are functionally dissociated concerning their involvement in internally driven and externally cue ...
Brain-computer interfaces, as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. In this paper we exploit a unique feat ...
Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are r ...
Brain-computer interfaces (BCIs), as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. An elegant approach to improve ...