**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Planck 2013 results. XVI. Cosmological parameters

Résumé

This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l greater than or similar to 40) are extremely well described by the standard spatially-flat six-parameter ACDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be theta* = (1.04147 +/- 0.00062) x 10(-2), Omega(b)h(2) = 0.02205 +/- 0.00028, Omega(c)h(2) = 0.1199 +/- 0.0027, and n(s) = 0.9603 +/- 0.0073, respectively (note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H-0 = (67.3 +/- 1.2) km s(-1) Mpc(-1), and a high value of the matter density parameter, Omega(m) = 0.315 +/- 0.017. These values are in tension with recent direct measurements of H-0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ACDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ACDM cosmology. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r(0.002) < 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find N-eff = 3.30 +/- 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N-eff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13(-0.10)(+0.13). We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ACDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 less than or similar to l less than or similar to 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an "anomaly" in an otherwise self-consistent analysis of the Planck temperature data.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (46)

Fond diffus cosmologique

Le fond diffus cosmologique (FDC, ou CMB pour l'anglais cosmic microwave background, « fond cosmique de micro-ondes ») est un rayonnement électromagnétique très homogène observé dans toutes les direc

Modèle ΛCDM

En cosmologie, le (se prononce « Lambda CDM », qui signifie en anglais Lambda - Cold Dark Matter, c'est-à-dire le modèle « lambda - matière noire froide ») ou modèle de concordance est un modèle cos

Max Planck

Max Planck, né Max Karl Ernst Ludwig Planck le à Kiel, dans le duché de Schleswig et mort le à Göttingen, en Allemagne (pendant l'occupation alliée), est un physicien allemand.
Max Planck fut l'un

Publications associées (103)

Chargement

Chargement

Chargement

Fabio Finelli, Jan Hamann, Slobodan Ilic, Ji Hyun Kim, Julien Lesgourgues, Jason Douglas McEwen

The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter Lambda CDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (sigma(8)) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are off set from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

Johan Comparat, Jean-Paul Richard Kneib, Anand Stéphane Raichoor, Amélie Tamone, Andrei Variu, Yuting Wang, Cheng Zhao, Zheng Zheng

We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Ly alpha forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, r(d), from eight different samples and six measurements of the growth rate parameter, f sigma(g), from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, Lambda CDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat Lambda CDM cosmological model when combined with Planck measurements. The combined BAO and RSD measurements indicate a sigma(g) = 0.85 +/- 0.03, implying a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a Lambda CDM model. Regardless of cosmological model, the precision on each of the three parameters, Omega(Lambda), H-0, and sigma(g), remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint Omega(k) = -0.0022 +/- 0.0022. The dark energy constraints lead to w(0) = -0.909 +/- 0.081 and w(a) = -049(-0.30)(+0.35), corresponding to an equation of state of w(p) = -1.018 +/- 0.032 at a pivot redshift z(p) = 0.29 and a Dark Energy Task Force Figure of Merit of 94. The inverse distance ladder measurement under this model yields H-0 = 68.18 +/- 0.79 km s(-1) Mpc(-1) , remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H-0 that are independent of the CMB data, with similar central values and precision under a Lambda CDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at Sigma m(v) < 0.115 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by comparing our results to a sample representative of the period 2000-2010. We compute the relative gain across the five dimensions spanned by w, Omega(k) , Sigma m(v),H-0, and sigma(g) and find that the SDSS BAO and RSD data reduce the total posterior volume by a factor of 40 relative to the previous generation. Adding again the Planck, DES, and Pantheon SN Ia samples leads to an overall contraction in the five-dimensional posterior volume of 3 orders of magnitude.

Since the public release of Planck data, several attempts have been made to explain the observed small tensions with other data sets, most of them involving an extension of the Lambda cold dark matter (Lambda CDM) model. We try here an alternative approach to the data analysis, based on separating the constraints coming from the different epochs in cosmology, in order to assess which part of the standard model generates the tension with the data. To this end, we perform a particular analysis of Planck data probing only the early cosmological evolution, until the time of photon decoupling. Then, we utilize this result to see if the Lambda CDM model can fit all observational constraints probing only the late cosmological background evolution, discarding any information concerning the late perturbation evolution. We find that all tensions between the data sets are removed, suggesting that our standard assumptions on the perturbed late-time history, as well as on reionization, could sufficiently bias our parameter extraction and be the source of the alleged tensions.