Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In today’s aging society, the number of neurodegenerative dis-eases such as Alzheimer’s disease (AD) increases. Reliable tools forautomatic early screening as well as monitoring of AD patients arenecessary. For that, semantic deficits have been shown to be ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
Deep learning relies on a very specific kind of neural networks: those superposing several neural layers. In the last few years, deep learning achieved major breakthroughs in many tasks such as image analysis, speech recognition, natural language processin ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
Generating a novel textual description of an image is an interesting problem that connects computer vision and natural language processing. In this paper, we present a simple model that is able to generate descriptive sentences given a sample image. This m ...
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary grap ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
Imaging devices have become ubiquitous in modern life, and many of us capture an increasing number of images every day. When we choose to share or store some of these images, our primary selection criterion is to choose the most visually pleasing ones. Yet ...
Objective quality assessment of compressed images is very useful in many applications. In this paper we present an objective quality metric that is better tuned to evaluate the quality of images distorted by compression artifacts. A deep convolutional neur ...