GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Bilayer grapheneBilayer graphene is a material consisting of two layers of graphene. One of the first reports of bilayer graphene was in the seminal 2004 Science paper by Geim and colleagues, in which they described devices "which contained just one, two, or three atomic layers" Bilayer graphene can exist in the AB, or Bernal-stacked form, where half of the atoms lie directly over the center of a hexagon in the lower graphene sheet, and half of the atoms lie over an atom, or, less commonly, in the AA form, in which the layers are exactly aligned.
Potential applications of graphenePotential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2008, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample the area of a cross section of a human hair costing more than 1,000asofApril2008(about100,000,000/cm2). Since then, exfoliation procedures have been scaled up, and now companies sell graphene in large quantities. Graphene nanoribbonGraphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene. Large quantities of width-controlled GNRs can be produced via graphite nanotomy, where applying a sharp diamond knife on graphite produces graphite nanoblocks, which can then be exfoliated to produce GNRs as shown by Vikas Berry.
Dépôt chimique en phase vapeurvignette|Schéma d'un CVD Le dépôt chimique en phase vapeur (ou CVD pour l'anglais chemical vapor deposition) est une méthode de dépôt sous vide de films minces, à partir de précurseurs gazeux. La CVD est un procédé utilisé pour produire des matériaux solides de haute performance, et de grande pureté. Ce procédé est souvent utilisé dans l'industrie du semi-conducteur pour produire des couches minces. Dans un procédé CVD typique, le substrat est exposé à un ou plusieurs précurseurs en phase gazeuse, qui réagissent et/ou se décomposent à la surface du substrat pour générer le dépôt désiré.
Oxyde de graphiteL'oxyde de graphite, autrefois appelé oxyde graphitique ou acide graphitique, est un composé inorganique de carbone, oxygène et hydrogène dans des ratios atomiques variables. Il est obtenu en traitant du graphite avec des oxydants forts. Le produit le plus oxydé est le solide jaune avec un ratio C:O entre 2,1 et 2,9 qui conserve la structure en couche du graphite mais avec des espaces intercouches beaucoup plus larges et irréguliers.
Opto-électroniquealt=Une diode laser vue au microscope électronique|vignette|Une diode laser vue au microscope électronique L'opto-électronique est à la fois une branche de l'électronique et de la photonique. Elle concerne l'étude des composants électroniques, appelés aussi composants photoniques, qui émettent de la lumière ou interagissent avec elle. Parmi eux, se trouvent les capteurs ou les diodes permettant la conversion de photons en charge électrique ou réciproquement, les systèmes permettant la gestion d'un signal optique dans les télécommunications par fibre optique ou encore les systèmes d'optique intégrée.
Diffusion ThomsonLa diffusion Thomson est la diffusion d'un photon de faible énergie sur une particule chargée de matière au repos, généralement un électron libre, c'est-à-dire non lié à un atome. La diffusion Thomson est un des deux régimes particuliers de la diffusion Compton plus générale. Cette diffusion a été expliquée par Joseph John Thomson. Cette diffusion (voir Diffusion des particules) s'effectue pour des énergies faibles, le rayonnement électromagnétique est absorbé puis réémis par la particule.
Intégration à très grande échelleL'intégration à très grande échelle (ou VLSI pour Very-Large-Scale Integration en anglais) est une technologie de circuit intégré (CI) dont la densité d'intégration permet de supporter plus de 100 000 composants électroniques sur une même puce. Elle a été réalisée pour la première fois dans les années 1980, dans le cadre du développement des technologies des semi-conducteurs et des communications. Les premières puces à semi-conducteurs supportaient un seul transistor chacune.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.