PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Bile acids regulate nongenomic actions through the activation of TGR5, a membrane receptor that is G protein-coupled to the induction of adenylate cyclase. In this work, a training set of 43 bile acid derivatives is used to develop a molecular interaction ...
We generated and characterized a firefly luciferase reporter mouse for the nuclear receptor farnesoid X receptor (FXR). This FXR reporter mouse has basal luciferase expression in the terminal ileum, an organ with well-characterized FXRalpha signaling. In v ...
23-Alkyl-substituted and 6,23-alkyl-disubstituted derivatives of chenodeoxycholic acid are identified as potent and selective agonists of TGR5, a G-protein coupled receptor for bile acids (BAs). In particular, we show that methylation at the C-23(S) positi ...
Recent studies have established that bile salts are signaling molecules, besides their classic function in dietary lipid absorption and cholesterol metabolism. Bile salts signal by activating mitogen-activated protein kinase (MAPK) pathways and nuclear rec ...
The metabolic nuclear receptors act as metabolic and toxicological sensors, enabling the organism to quickly adapt to environmental changes by inducing the appropriate metabolic genes and pathways. Ligands for these metabolic receptors are compounds from d ...
Liver X receptors (LXRs) are nuclear receptors that act as metabolic sensors for cellular cholesterol (Xol) and oxysterol content. Increased oxysterol levels activate LXRs, which then induce: the removal of cholesterol out of peripheral cells; transport of ...
Cholesterol and bile acid metabolism is tightly controlled by nuclear receptors. The liver X receptor, an oxysterol-activated nuclear receptor, limits cholesterol accumulation in the body both by stimulating reverse cholesterol transport and by inhibiting ...
TGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modu ...
Bile acids (BAs) are water-soluble end products from cholesterol metabolism and are essential for efficient absorption of dietary lipids. By using targeted somatic mutagenesis of the nuclear receptor liver receptor homolog 1 (LRH-1) in mouse hepatocytes, w ...
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglycer ...