Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable i ...
We study the plasmon modes of gold nanorods (as short as similar to 100 nm) on a nonmetallic conductive substrate using scanning tunneling microscope-induced light emission (STM-LE) with a nonplasmonic tungsten tip at room temperature in high vacuum (10-7 ...
The low-energy electronic structure of nanographenes can be tuned through zero-energy pi-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and ...
Van der Waals heterostructures (vdWHSs) enable the fabricationof complex electronic devices based on two-dimensional (2D) materials.Ideally, these vdWHSs should be fabricated in a scalable and repeatableway and only in the specific areas of the substrate t ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
To miniaturize the double-resonance (DR) rubidium (Rb) vapor-cell atomic clocks, a new type of micro-loop-gap microwave resonator (mu-LGR) is proposed for TE011-like mode where the magnetic field inside the cavity is homogeneous and oriented along its long ...
Over the past century, our understanding of life has been focused on its most fundamental building blocks: molecules. Biological molecules, such as proteins found in blood, other body fluids, or tissues, are excellent guides to identifying a normal or abno ...
Cotton fibers, a natural cellulose, have played a critical role in the development of wearable energy storage, owning to their wearability, integrability, eco-benignity, and cost effectiveness. Graphene, a two-dimensional carbon material, possesses excelle ...
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
To date, the vast majority of architected materials have leveraged two physical principles to control wave behavior, namely, Bragg interference and local resonances. Here, we describe a third path: structures that accommodate a finite number of delocalized ...