A three-dimensional self-opening intraneural peripheral interface (SELINE)
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...
The peripheral nervous system (PNS) regulates the exchange of sensory information andmotor commands between the body and the central nervous system. Further, through theautonomic nervous system, the PNS plays a pivotal role in controlling vital physiologic ...
Multi-polar stimulation protocols have been used in the past to increase the selectivity of electrical stimulation of the nervous system. Nonetheless, the number of possible multipolar stimulation protocols is prohibitively large and cannot be explored dur ...
Technological progress in materials science and microengineering along with new discoveries in neuroscience have contributed to restore lost or impaired sensory functions by closely interfacing with the nervous system. Electronic devices have begun to be i ...
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentia ...
Thanks to recent technological advances in microelectronics and bioengineering, it is now possible to restore lost or impaired sensory modalities by interfering the nervous system with elec-tronic devices and artificially reproducing the electrical encodin ...
Peripheral neural interfaces have been successfully used in the recent past to restore sensory-motor functions in disabled subjects and for the neuromodulation of the autonomic nervous system. The optimization of these neural interfaces is crucial for ethi ...
The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patte ...