Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The growth of a TiO shell at the surface of TiO2 nanowires allowed us to improve the power conversion efficiency of nanowire-based dye-sensitized solar cells by a factor 2.5. TiO2@TiO core-shell nanowires were obtained by a two-step process. First, rutile-phase TiO2 nanowires were hydrothermally grown. Second, a hongquiite-phase TiO shell was electrochem. deposited at the surface of the TiO2 nanowires. Bare TiO2 and heterojunction TiO2@TiO nanowire-based dye-sensitized solar cells were obtained using a cobalt(II/III) redox electrolyte and LEG4 as the dye. With this electrolyte/dye combination, dye-sensitized solar cells with outstanding open-circuit voltage values above 900 mV were systematically obtained. While TiO2@TiO nanowire-based dye-sensitized solar cells had slightly lower open-circuit voltage values than bare TiO2 nanowire-based dye-sensitized solar cells, they provided 3-fold higher photocurrents, overall reaching 2.5-fold higher power conversion efficiencies. The higher photocurrents were assocd. with the larger surface roughness and an enhanced charge-carrier sepn./transfer at the nanowire/dye interface.
Mohammad Khaja Nazeeruddin, Anurag Roy