Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper introduces a sparse signal representation algorithm in redundant dictionaries, called the M-Term Pursuit (MTP), with an application to image representation and scalable coding. The MTP algorithm belongs to the framework of the matching pursuit ( ...
In this work, we explore a framework for the sparse representation of video sequences by means of spatio-temporal functions able to exploit the 2D nature of images as well as the temporal smoothness often associated to object trajectories. Decomposition ov ...
Natural images are often modeled through piecewise-smooth regions. Region edges, which correspond to the contours of the objects, become, in this model, the main information of the signal. Contours have the property of being smooth functions along the dire ...
This paper studies quantization error in the context of Matching Pursuit coded streams and proposes a new coefficient quantization scheme taking benefit of the Matching Pursuit properties. The coefficients energy in Matching Pursuit indeed decreases with t ...
This paper introduces an algorithm for sparse approximation in redundant dictionaries, called the M-Term Pursuit (MTP), based on the matching pursuit approach (MP). This algorithm decomposes the signal into a linear combination of selected atoms, chosen to ...