Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Uniform adhesive TiO2–ZrO2 films co-sputtered on polyester (PES) under low intensity sunlight irradiation discolored methylene blue (MB) within 120 min. The discoloration kinetics was seen to be accelerated by a factor four by TiO2–ZrO2–Cu containing ∼0.01% Cu, as determined by X-ray fluorescence (XRF). TiO2–ZrO2–Cu also increased also accelerated by a factor the discoloration of MB compared to TiO2/Cu(PES). MB discoloration was also monitored under visible light in the solar cavity by using a 400 nm cutoff filter. Photocatalyst surfaces were characterized by spectroscopic methods showing the film optical absorption and by X-ray photoelectron spectroscopy (XPS), the surface atomic percentage concentration up to 120 nm (∼600 layers). The band-gaps of TiO2–ZrO2 and TiO2–ZrO2–Cu were estimated for films co-sputtered for different times. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR), the systematic shift of the predominating νs(CH2) vibration-rotational MB bands was monitored up to complete MB discoloration under low intensity solar simulated light. Evidence is presented for the OHradical dot generation by TiO2–ZrO2–Cu participating in the self-cleaning mechanism. The photo-induced interfacial charge transfer (IFCT) on the TiO2–ZrO2–Cu is discussed in terms of the electronic band positions of the binary oxides and Cu intra-gap states. This study presents the first evidence for a Cu-promoted composed of two binary oxide semiconductors accelerating the self-cleaning performance.
Christoph Bostedt, Andre Al Haddad, Thomas Roland Barillot
Kevin Sivula, Jun Ho Yum, Mounir Driss Mensi, Liang Yao, Nestor Guijarro Carratala, Han-Hee Cho, Barbara Alexandra Primera Darwich, Luc Emile Monnier