Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Joint localization of graph signals in vertex and spectral domain is achieved in Slepian vectors calculated by either maximizing energy concentration (mu) or minimizing modified embedded distance (xi) in the subgraph of interest. On the other hand, graph L ...
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Depth estimation is an essential component in understanding the 3D geometry of a scene, with numerous applications in urban and indoor settings. These scenes are characterized by a prevalence of human made structures, which in most of the cases, are either ...
An emerging way to deal with high-dimensional non-euclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This work aims to elevate th ...
Institute of Electrical and Electronics Engineers2018
This master thesis provides in-depth explanations of how deep learning and graph theory can be used together to perform pointwise classification in 3D point clouds obtained by combinations of geospatial images. That scene understanding problem arises in a ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
Community structure in graph-modeled data appears in a range of disciplines that comprise network science. Its importance relies on the influence it bears on other properties of graphs such as resilience, or prediction of missing connections. Nevertheless, ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...
Can one reduce the size of a graph without significantly altering its basic properties? The graph reduction problem is hereby approached from the perspective of restricted spectral approximation, a modification of the spectral similarity measure used for g ...
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...