**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

Résumé

The Compact Linear Collider (CLIC) is a 3 TeV e+e- machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2x10^34 cm^2 s^-1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DR is built, accounting for the whole machine. Beam dynamics simulations are performed with HEADTAIL to investigate the effect on beam dynamics. For the correct impedance modeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuum but its properties up to high frequencies were still widely unexplored. A new method using rectangular waveguides is proposed, benchmarked and applied for the first time to characterize NEG up to hundreds of GHz. The numerical tools used for the DR studies are applied and benchmarked with measurements in other light sources. In particular, single bunch measurements were performed in the ALBA light source and compared to the model prediction using HEADTAIL. The impedance budget of ALBA was estimated before and after the installation of a pinger magnet. Furthermore, studies were also carried out for the Swiss Light Source (SLS) upgrade to investigate the machine performance in terms of single bunch instabilities for lattices with negative momentum compaction factor.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (15)

Publications associées (3)

Vide (physique)

En physique, le vide est l'absence de toute matière. Le vide absolu est donc un milieu statistiquement sans particules élémentaires. Un espace dans lequel les molécules sont fortement raréfiées peut

Haute fréquence

La haute fréquence désigne un spectre de fréquences d'ondes électromagnétiques modulées dont la nature diffère en fonction du domaine auquel il s'applique. Le présent article traite du domaine des «

Compact Linear Collider

Le Compact Linear Collider (CLIC), ou Collisionneur Linéaire Compact est un accélérateur de particules en projet au CERN. Il doit prendre la relève du Large Hadron Collider pour approfondir les futu

Chargement

Chargement

Chargement

Eirini Koukovini Platia, Giovanni Rumolo, Carlo Zannini

Due to its effective pumping ability, nonevaporable getter (NEG) coating is considered for the vacuum chambers of the Compact Linear Collider (CLIC) electron damping rings (EDR). The aim is to suppress fast beam ion instabilities. The electromagnetic (EM) characterization of the NEG properties up to ultra-high frequencies is required for the correct impedance modeling of the damping ring (DR) components. The properties are determined using rectangular waveguides which are coated with NEG. The method is based on a combination of complex transmission coefficient S-21 measurements with a vector network analyzer (VNA) and 3D simulations using CST Microwave Studio (R) (CST MWS). The frequency ranges discussed in this paper are 220-330 and 500-750 GHz.

2017A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersion-free regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice features small values of the optical functions, a large number of compact TME cells, and a large number of wiggler magnets. Strong sextupole magnets are needed for the chromatic correction which introduces significant nonlinearities, decreasing the dynamic aperture. The nonlinear optimization of the lattice is described. An appropriate scheme of chromaticity correction is determined that gives reasonable dynamic aperture and zero chromaticity. The nonlinearities induced by the short period wiggler magnets and their influence on the beam dynamics are also studied. In addition, approaches for absorption of synchrotron radiation power produced by the wigglers are discussed. Realistic misalignments of magnets and monitors increase the equilibrium emittance. The sensitivity of the CLIC damping ring to various kinds of alignment errors is studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed in order to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron tune coupling. The small emittance, short bunch length, and high current in the CLIC damping ring could give rise to collective effects which degrade the quality of the extracted beam. A number of possible instabilities and an estimate of their impact on the ring performance are briefly surveyed. The effects considered include fast beam-ion instability, coherent synchrotron radiation, Touschek scattering, intrabeam scattering, resistive-wall wake fields, and electron cloud.

Optics design and performance of an ultra-low emittance damping ring for the compact linear collider

Eirini Koukovini Platia, Nicolas Frank Mounet, Giovanni Rumolo, Benoît Salvant

Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

2011