Publication

Exploiting NVM in Large-scale Graph Analytics

Willy Zwaenepoel, Jasmina Malicevic
2015
Article de conférence
Résumé

Data center applications like graph analytics require servers with ever larger memory capacities. DRAM scaling, how- ever, is not able to match the increasing demands for ca- pacity. Emerging byte-addressable, non-volatile memory technologies (NVM) offer a more scalable alternative, with memory that is directly addressable to software, but at a higher latency and lower bandwidth. Using an NVM hardware emulator, we study the suitabil- ity of NVM in meeting the memory demands of four state of the art graph analytics frameworks, namely Graphlab, Galois, X-Stream and Graphmat. We evaluate their perfor- mance with popular algorithms (Pagerank, BFS, Triangle Counting and Collaborative filtering) by allocating mem- ory exclusive from DRAM (DRAM-only) or emulated NVM (NVM-only). While all of these applications are sensitive to higher latency or lower bandwidth of NVM, resulting in perfor- mance degradation of up to 4X with NVM-only (compared to DRAM-only), we show that the performance impact is somewhat mitigated in the frameworks that exploit CPU memory-level parallelism and hardware prefetchers. Further, we demonstrate that, in a hybrid memory system with NVM and DRAM, intelligent placement of application data based on their relative importance may help offset the overheads of the NVM-only solution in a cost-effective man- ner (i.e., using only a small amount of DRAM). Specifically, we show that, depending on the algorithm, Graphmat can achieve close to DRAM-only performance (within 1.2X) by placing only 6.7% to 31.5% of its total memory footprint in DRAM

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.