Autocalibrated Signal Reconstruction from Linear Measurements Using Adaptive GAMP
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Popular transforms, like the discrete cosine transform or the wavelet transform, owe their success to the fact that they promote sparsity. These transforms are capable of extracting the structure of a large class of signals and representing them by a few t ...
Over the past decade researches in applied mathematics, signal processing and communications have introduced compressive sampling (CS) as an alternative to the Shannon sampling theorem. The two key observations making CS theory widely applicable to numerou ...
We develop a principled way of identifying probability distributions whose independent and identically distributed realizations are compressible, i.e., can be well approximated as sparse. We focus on Gaussian compressed sensing, an example of underdetermin ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
The present invention discloses a method, apparatus and computer program product for determining the location of a plurality of speech sources in an area of interest, comprising performing an algorithm on a signal issued by either one of said plurality of ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
In this paper, we reconstruct signals from underdetermined linear measurements where the componentwise gains of the measurement system are unknown a priori. The reconstruction is performed through an adaptation of the message-passing algorithm called adapt ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...