Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this work we introduce a manifold learning-based method for uncertainty quantification (UQ) in systems describing complex spatiotemporal processes. Our first objective is to identify the embedding of a set of high-dimensional data representing quantitie ...
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
Big data trends in health research challenge the oversight mechanism of the Research Ethics Committees (RECs). The traditional standards of research quality and the mandate of RECs illuminate deficits in facing the computational complexity, methodological ...
Spatial self-attention layers, in the form of Non-Local blocks, introduce long-range dependencies in Convolutional Neural Networks by computing pairwise similarities among all possible positions. Such pairwise functions underpin the effectiveness of non-lo ...
This paper addresses the complexity reduction of stochastic homogenization of a class of random materials for a stationary diffusion equation. A cost-efficient approximation of the correctors is obtained using a method designed to exploit quasi-periodicity ...
Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving phenomena, and have application in physics, biology and control. As determining an analytical description of the dynamics is often difficult, data-driven approaches are ...
Testing mutual independence among several random vectors of arbitrary dimensions is a challenging problem in Statistics, and it has gained considerable interest in recent years. In this article, we propose some nonparametric tests based on different notion ...
Popular clustering algorithms based on usual distance functions (e.g., the Euclidean distance) often suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise distances and violation of neighborhood structure have advers ...
The Quantum Fisher Information matrix (QFIM) is a central metric in promising algorithms, such as Quantum Natural Gradient Descent and Variational Quantum Imaginary Time Evolution. Computing the full QFIM for a model with d parameters, however, is computat ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2021
The rapid development of autonomous driving and mobile mapping calls for off-the-shelf LiDAR SLAM solutions that are adaptive to LiDARs of different specifications on various complex scenarios. To this end, we propose MULLS, an efficient, low-drift, and ve ...