Peatland vascular plant functional types affect methane dynamics by altering microbial community structure
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Global measurements of atmospheric methane (CH4) concentrations continue to show large interannual variability whose origin is only partly understood. Here we quantify the influence of the El Nino-Southern Oscillation (ENSO) on wetland CH4 emissions, which ...
Being a potent greenhouse gas, N2O emitted by the terrestrial biosphere during abrupt climate change events could have amplified externally forced warming. To investigate this possibility, we tested the sensitivity of terrestrial N2O emissions to an abrupt ...
The atmospheric methane concentration in ancient times can be reconstructed by analysing air entrapped in bubbles of polar ice sheets. We present results from an ice core from Central Greenland (Eurocore) covering the last 1000 years. We observe variations ...
Recent analyses of ice core methane concentrations suggested that methane emissions from wetlands were the primary driver for prehistoric changes in atmospheric methane. However, these interpretations conflict as to the location of wetlands, magnitude of e ...
Little is known about the structure of microbial communities in Sphagnum peatlands, and the potential effects of the increasing atmospheric CO2 concentration on these communities are not known. We analyzed the structure of microbial communities in five Sph ...
The Hudson Bay Lowlands (HBL) is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircr ...
Tropical reservoirs have been identified as important methane (CH4) sources to the atmosphere, primarily through turbine and downstream degassing. However, the importance of ebullition (gas bubbling) remains unclear. We hypothesized that ebullition is a di ...
Methane (CH4) is a major greenhouse gas whose global warming potential is 23 times more important than carbon dioxide (CO2). CH4 concentrations have steadily increased since the beginning of the industrial era, reaching an unprecedent level (almost 1800 pp ...
We extend the analysis of a global CH4 data set retrieved from SCIAMACHY (Frankenberg et al., 2006) by making a detailed comparison with inverse TM5 model simulations for 2003 that are optimized versus high accuracy CH4 surface measurements from the NOAA E ...
[1] Methane fluxes were measured at five sites representing oligotrophic peatlands along a European transect. Five study plots were subjected to elevated CO2 concentration (560 ppm), and five plots to NH4NO3 (3 or 5 g N yr(-1)). The CH4 emissions from the ...