Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Stability (learning theory)Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Savoir-êtrevignette|Savoir-être Le savoir-être est un ensemble de qualités personnelles, d'habiletés sociales correspondant à la capacité de produire des actions et des réactions adaptées à l'environnement humain et écologique. Il est nécessaire à l'autonomie, au partage avec les autres et à une vie affective riche. Cette capacité s'acquiert en partie par la connaissance de savoirs comportementaux spécifiques en situation d'acteur social.
Apprentissage moteur. Les approches basées sur les théories de l’apprentissage moteur tiennent habituellement compte de quatre variables principales: les étapes d’apprentissage, le type de tâche à réaliser, la pratique et le feedback. Le processus d’apprentissage moteur comprend trois stades. Le premier est le stade cognitif, c’est-à-dire que l’individu connaît chaque séquence de la tâche à réaliser, mais il ne sait pas exactement comment l’exécuter. Ensuite, il y a le stade associatif, qui correspond au raffinement des habiletés motrices et à la diminution d’erreurs.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau métallo-organiquevignette|Exemple de MOF avec différents ligands organiques. Les réseaux métallo-organiques (MOF, pour l'anglais metal–organic framework) sont des solides poreux hybrides cristallins constitués d'ions métalliques ou de clusters coordonnés à des ligands organiques pour former des structures en une, deux ou trois dimensions. Les MOF présentent notamment une surface spécifique très élevée du fait de leur structure nanoporeuse. Les MOF sont nommés selon leur lieu de découverte suivi d’un numéro d’incrémentation, par exemple MIL-101 pour Matériaux Institut Lavoisier , ou UiO-66.