Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Arbre cartésienvignette|240x240px| Une séquence de nombres et l'arbre cartésien qui en dérive. En algorithmique, un arbre cartésien est un arbre binaire construit à partir d'une séquence de nombres. Il est défini comme un tas dont un parcours symétrique de l'arbre renvoie la séquence d'origine. Introduits par Jean Vuillemin (1980) dans le cadre des structures de données de recherche par plage géométrique, les arbres cartésiens ont également été utilisés dans la définition des arbres-tas et des structures de données d'arbres de recherche binaire randomisés pour les problèmes de recherche dichotomique.
Métrique pseudo-riemannienneEn mathématiques et en physique, une métrique pseudo-riemannienne est une extension de la métrique riemannienne dans laquelle un certain nombre d'axes de l'espace qu'elle décrit ont des normes négatives. Si la métrique pseudo-riemanienne est en réalité un champ tensoriel, et donc varie d'un point à un autre, sa signature (le nombre d'axes dont les normes sont positives et le nombre d'axes dont les normes sont négatives), elle, ne peut jamais changer pour un même espace. Variété pseudo-riemannienne Catégori
Division algorithmA division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division.