Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we study the information-theoretic limits of community detection in the symmetric two-community stochastic block model, with intra-community and inter-community edge probabilities and respectively. We consider the sparse setting, in which and do not scale with , and provide upper and lower bounds on the proportion of community labels recovered on average. We provide a numerical example for which the bounds are near-matching for moderate values of , and matching in the limit as grows large.