Eliciting Truthful Information with the Peer Truth Serum
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
This work addresses the problem of sharing partial information within social learning strategies. In social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate inf ...
This work studies the learning process over social networks under partial and random information sharing. In traditional social learning models, agents exchange full belief information with each other while trying to infer the true state of nature. We stud ...
Piscataway2024
Mechanism design theory examines the design of allocation mechanisms or incentive systems involving multiple rational but self-interested agents and plays a central role in many societally important problems in economics. In mechanism design problems, agen ...
EPFL2020
A plethora of real world problems consist of a number of agents that interact, learn, cooperate, coordinate, and compete with others in ever more complex environments. Examples include autonomous vehicles, robotic agents, intelligent infrastructure, IoT de ...
EPFL2022
,
In multi-agent reinforcement learning, multiple agents learn simultaneously while interacting with a common environment and each other. Since the agents adapt their policies during learning, not only the behavior of a single agent becomes non-stationary, b ...
We conduct two survey experiments to study which information people choose to consume and how it affects their beliefs. In the first experiment, respondents choose between optimistic and pessimistic article headlines related to the COVID-19 pandemic and ar ...
The adaptive social learning paradigm helps model how networked agents are able to form opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents repeatedly update their beliefs based on private observation ...
We study a general class of repeated auctions, such as the ones found in electricity markets, as multi-agent games between the bidders. In such a repeated setting, bidders can adapt their strategies online using no-regret algorithms based on the data obser ...