Publication

Inactivation kinetics and mechanisms of viral and bacterial pathogen surrogates during urine nitrification

Résumé

This paper assesses the inactivation performance and mechanisms in urine nitrification reactors using bacteria and bacteriophages as surrogates for human pathogens. Two parallel continuous-flow moving bed biofilm reactors (MBBRs) were operated over a two-month period. One MBBR was used to conduct a continuous spike experiment with bacteriophage MS2. The second reactor provided the matrix for a series of batch experiments conducted to investigate the inactivation of Salmonella typhimurium, Enterococcus spp., MS2, Q beta, and Phi X174 during urine nitrification. The roles of aeration, biological activity, and solution composition in inactivation were evaluated. Whereas bacteriophages FX174 and MS2 remained infective following urine nitrification, partial inactivation of bacteriophage Q beta was observed. Q beta inactivation was attributed primarily to aeration with a potential additive effect of biological processes, i.e., processes that are attributable to the presence of other microorganisms such as sorption to biomass, predation or enzymatic activity. Tailing of Q beta inactivation to a plateau indicated a protective effect of the solution components in aerated nitrification reactors. In contrast to the bacteriophages, S. typhimurium and Enterococcus spp. were mainly affected by biological processes: they were inactivated in biologically active nitrification reactors while remaining stable in chemically equivalent filtered controls. The tested bacteria could, for example, be out-competed by other microbial communities or sorbed to biomass in the reactor. Microbial communities did not adapt to inactivate bacteriophage MS2 (e.g., via increased prevalence of virus predators) in the experimental time-scale evaluated, with no observed inactivation of MS2 during continuous input for 51 days in the flow-through MBBR. The compilation of these results suggests that biological nitrification as a fertilizer production process remains insufficient as a stand-alone technology for the sanitization of source-separated urine.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Bactériophage
Les bactériophages, ou phages (mot formé des éléments bactério-, « bactérie », et -phage, « qui mange »), ou, plus rarement, virus bactériens, sont des virus qui n'infectent que des bactéries. Ils sont présents dans toute la biosphère. Ils sont particulièrement abondants dans les milieux riches en bactéries, et donc notamment dans les excréments, le sol et les eaux d'égout. Dans un millilitre d'eau de mer, on compte près de 50 millions de bactériophages. Le support de l'information génétique (génome) des bactériophages peut être un ADN ou un ARN.
Secondary treatment
Secondary treatment (mostly biological wastewater treatment) is the removal of biodegradable organic matter (in solution or suspension) from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids.
Boue activée
Le procédé dit « à boues activées » utilise l'épuration biologique dans le traitement des eaux usées. C'est un mode d’épuration par cultures libres. Dans une filière de traitement des eaux (i.e. les différentes phases d'épuration pour une station donnée), le procédé à boues activées fait partie des traitements secondaires. Ce procédé provient de l'étude réalisée à Manchester par Arden et Lockett. Ils mettront au point la technique d'abord dans un seul bassin, puis par la suite l'amélioreront par l'ajout d'autres bassins et étapes.
Afficher plus
Publications associées (35)

E-coli-MS2 bacteriophage interactions during solar disinfection of wastewater and the subsequent post-irradiation period

César Pulgarin, Anna Carratala Ripolles, Stefanos Giannakis

In this study, the effect of MS2 bacteriophage on the inactivation of its Escherichia coli host was evaluated in an effort to recreate some the main factors governing solar disinfection of wastewater (namely microbial growth, infection, photonic flux). As ...
ELSEVIER SCIENCE SA2019

Influence of Wastewater Composition on the Microbial Communities of Aerobic Granular sludge

Christof Holliger, Julien Maillard, Aline Sondra Adler, Valérie Berclaz, Marie Christelle Horisberger, Eva Reynaert

Aerobic granular sludge (AGS) is an emerging technology offering an alternative wastewater treatment with a reduced footprint compared to conventional activated sludge systems. Basic understanding of AGS processes has mainly been obtained in laboratory-sca ...
2019

Imaging the aerobic granular sludge microbial community using light-sheet fluorescence micros

Christof Holliger, Julien Maillard, Arnaud Michel Gelb, Karen Gemayel

One of the aims of wastewater treatment is the removal of phosphorus before the water is discharged into the environment. Since phosphorus concentrations in wastewater exceed the requirement of bacterial growth, biological phosphorus removal is based on th ...
2019
Afficher plus
MOOCs associés (7)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Introduction à l'immunologie
Ce cours décrit les mécanismes fondamentaux du système immunitaire. Ses connaissances seront ensuite utilisées pour mieux comprendre les bases immunologiques de la vaccination, de la transplantation,
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.