**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.

Publication# System transverse in-plane shear stiffness of pultruded GFRP bridge decks

Résumé

The static transverse behavior of two pultruded GFRP deck systems with trapezoidal (DS) and triangular (AS) cell cross-sectional geometry was experimentally investigated in order to study their transverse in-plane shear stiffness. Symmetric three-point bending experiments up to failure were performed on 200-mm-wide beams. Their stiffness, strength and failure modes were compared. Different load transfer mechanisms were found in the DS (frame-dominated) and AS (truss-governed) systems depending on the cell geometry. The DS beams exhibited a lower apparent bending stiffness (24-30 times less) and degree of composite action between the flanges (14-17 times less) than the AS beams. These dissimilarities were attributed to the lower transverse in-plane shear stiffness provided by the trapezoidal core than by the triangular core. The low bound values for both system in-plane shear moduli were estimated from the experimental deflection results. The system in-plane shear modulus of the DS beams represented approximately 2-3% of that of the AS beams. (C) 2015 Elsevier Ltd. All rights reserved.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés (17)

Publications associées (32)

Impulse excitation technique

The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres.

Sandwich theory

Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first-order beam theory. The linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering. Some advantages of sandwich construction are: Sandwich cross sections are composite.

Linear elasticity

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.

Brice Tanguy Alphonse Lecampion, Haseeb Zia, Fatima-Ezzahra Moukhtari

The configuration of a hydraulic fracture (HF) propagating perpendicular to the isotropy plane of a transversely isotropic (TI) material is encountered in most sedimentary basins. We account for both elastic and fracture toughness anisotropy, and investiga ...

2020The development and construction of offshore wind farms requires the correct estimation of the friction that can be mobilised at the rock/grout interface. In conventional studies, the shear behaviour of a joint is usually investigated with laboratory tests ...

2021Simon Nessim Henein, Ilan Vardi, Mohamed Gamal Abdelrahman Ahmed Zanaty

Perfect elasticity is not achievable in real-life situation, so spring stiffness is not perfectly constant. In this paper, we study the effect of modifying non-linear stiffness terms while keeping the nominal stiffness constant. We introduce three methods ...