Critical Josephson current in the dynamical Coulomb blockade regime
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We employ the Dirac-Frenkel variational principle and the multiple Davydov ansatz to study time-dependent fluorescence spectra of a driven qubit in the weak to strong qubit-reservoir coupling regimes, where both the Rabi frequency and the spontaneous decay ...
Quantum computing (QC) has already entered the industrial landscape and several multinational corporations have initiated their own research efforts. So far, many of these efforts have been focusing on superconducting qubits, whose industrial progress is c ...
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonst ...
The Josephson effect in scanning tunneling microscopy (STM) is an excellent tool to probe the properties of a superconductor on a local scale. We use atomic manipulation in a low temperature STM to create mesoscopic single channel contacts and study the Jo ...
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonly employed to steer chemical reactions. Local control theory provides an al ...
Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary th ...
We have investigated the phase dynamics of a superconducting tunnel junction at ultralow temperatures in the presence of high damping, where the interaction with environmental degrees of freedom represents the leading energy scale. In this regime, theory p ...
Microcavity polaritons are hybrid quasiparticles emerging from the strong coupling between quantum well excitons and light in the resonator. Their unique half-light half-matter nature brings in specific properties like low effective mass, nonlinearity due ...
This thesis contains two major topics, the restriction of tunneling to only a few channels in the scanning tunneling microscope (STM) and the interaction of local magnetic impurities with superconductivity. At a temperature of 15mK, the quantum back-action ...
We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In ...