Crystal plasticity finite element modelling of low cycle fatigue in fcc metals
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2(111) dislocations in a randomly-distributed model-BCC Co16.67Fe36.67Ni16.67Ti30 alloy. Core structure variations along an individual dislocation li ...
The role of pre-existing mobile and immobile dislocation densities on the evolution of geometrical necessary dislocation densities (GNDs) during cyclic fatigue in shear is studied using a continuum dislocation-based model incorporated in a crystal plastici ...
Metal fatigue during cyclic loading puts an endurance limit on most of today's technology. It impacts the reliability of metallic components used for transportation, electronic devices and energy production because fatigue failure can occur without any app ...
Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. H ...
The macroscopic strength of metals is determined by the dislocation arrangements that are formed when dislocations slip in the crystal lattice in response to the applied stress. Despite the extensive research carried out, the transition from uniform to non ...
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crys ...
The performance of crystalline materials varies depending on the considered scale. To understand the size dependence of materials properties, the interaction and evolution of defects are essential. As such, the role played by dislocations is crucial for mo ...
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant compl ...
Dislocation dynamics are important to understand material plasticity effects, e.g. size dependent strain hardening. Dislocations are nucleated at nano-scale, and interact with other defects including grain boundaries and other dislocations at micro-scale. ...