Publication

Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T

Résumé

PURPOSE: To investigate the effect of spatial resolution and parallel imaging acceleration factor on the quality of the motion estimates derived from image navigators with a three-dimensional (3D) gradient-recalled echo (GRE) acquisition with fat excitation (3D FatNavs) for neuroimaging at 7T. METHODS: Six healthy subjects were scanned for 10 min, during which time repeated GRE volumes were acquired during small movements-alternating between fat and water excitations (WaterNavs)-allowing retrospective decimation of the data to simulate a variety of combinations of image resolution and acceleration factor. Bias and error in the motion estimates were then compared across navigator parameters. RESULTS: The 2-mm, 4 x 4 accelerated data (TRvolume = 1.2 s) provided motion estimates that were almost indistinguishable from those from the full original acquisition (2 mm, 2 x 2, TRvolume = 5.2 s). For faster navigators, it was found that good accuracy and precision were achievable with TRvolume = 144 ms, using a lower spatial resolution (4 mm, 6 x 6 acceleration) to avoid the bias observed at exceptionally high acceleration factors (8 x 8 or higher). Parameter estimates from WaterNavs and FatNavs showed close agreement with FatNavs, with better performance at exceptionally high acceleration factors. CONCLUSION: Our data help to guide the parameter choice for 3D FatNavs when a compromise must be reached between the quality of the motion estimates and the available scan time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Proper acceleration
In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Four-acceleration
In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge. In inertial coordinates in special relativity, four-acceleration is defined as the rate of change in four-velocity with respect to the particle's proper time along its worldline.
Parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Afficher plus
Publications associées (46)

On the use of Cramér-Rao Lower Bound for least-variance circuit parameters identification of Li-ion cells

Mario Paolone, Vladimir Sovljanski

Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs) are widely used to characterize the impedance and estimate parameters of electrochemical systems such as batteries. We use a generic ECM with ten parameters grouped to model ...
2024

OASIS: Optimisation-based Activity Scheduling with Integrated Simultaneous choice dimensions

Michel Bierlaire, Timothy Michael Hillel, Janody Pougala

Activity-based models offer the potential of a far deeper understanding of daily mobility behaviour than trip-based models. However, activity-based models used both in research and practice have often relied on applying sequential choice models between sub ...
2023

Filtered data and eigenfunction estimators for statistical inference of multiscale and interacting diffusion processes

Andrea Zanoni

We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
EPFL2022
Afficher plus
MOOCs associés (15)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.