GénéricitéEn programmation, la généricité (ou programmation générique), consiste à définir des algorithmes identiques opérant sur des données de types différents. On définit de cette façon des procédures ou des types entiers génériques. On pourrait ainsi programmer une pile, ou une procédure qui prend l'élément supérieur de la pile, indépendamment du type de données contenues. C'est donc une forme de polymorphisme, le « polymorphisme de type » dit aussi « paramétrage de type » : en effet, le type de donnée général (abstrait) apparaît comme un paramètre des algorithmes définis, avec la particularité que ce paramètre-là est un type.
Parametric polymorphismIn programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming. Parametric polymorphism may be contrasted with ad hoc polymorphism.
Paramètre (programmation informatique)En programmation informatique, un paramètre est une donnée manipulée par une section de code (voir : sous-programme, fonction, méthode) et connue du code appelant cette section. On distingue deux types de paramètres. Un paramètre d'entrée est une donnée fournie par le code appelant au code appelé. Cette donnée peut être transmise de deux façons : passage par copie (aussi appelé par valeur) : le code appelé dispose d'une copie de la valeur qu'il peut modifier sans affecter l'information initiale dans le code appelant ; passage par adresse (aussi appelé par référence) : le code appelé dispose d'une information lui permettant d'accéder en mémoire à la valeur que le code appelant cherche à lui transmettre.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Type classIn computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.
Ad hoc polymorphismIn programming languages, ad hoc polymorphism is a kind of polymorphism in which polymorphic functions can be applied to arguments of different types, because a polymorphic function can denote a number of distinct and potentially heterogeneous implementations depending on the type of argument(s) to which it is applied. When applied to object-oriented or procedural concepts, it is also known as function overloading or operator overloading.
Top typeIn mathematical logic and computer science, some type theories and type systems include a top type that is commonly denoted with top or the symbol ⊤. The top type is sometimes called also universal type, or universal supertype as all other types in the type system of interest are subtypes of it, and in most cases, it contains every possible object of the type system. It is in contrast with the bottom type, or the universal subtype, which every other type is supertype of and it is often that the type contains no members at all.
Polymorphisme (informatique)En informatique et en théorie des types, le polymorphisme, du grec ancien polús (plusieurs) et morphê (forme), est le concept consistant à fournir une interface unique à des entités pouvant avoir différents types. Par exemple, des opérations telles que la multiplication peuvent ainsi être étendues à des scalaires aux vecteurs ou aux matrices, l'addition, des scalaires aux fonctions ou aux chaînes de caractères, etc.
Bounded quantificationIn type theory, bounded quantification (also bounded polymorphism or constrained genericity) refers to universal or existential quantifiers which are restricted ("bounded") to range only over the subtypes of a particular type. Bounded quantification is an interaction of parametric polymorphism with subtyping. Bounded quantification has traditionally been studied in the functional setting of System F
Grammaire contextuelleUne grammaire contextuelle est une grammaire formelle dans laquelle les substitutions d'un symbole non terminal sont soumises à la présence d'un contexte gauche et d'un contexte droit. Elles sont plus générales que les grammaires algébriques. Les langages formels engendrés par les grammaires contextuelles sont les langages contextuels. Ils sont reconnus par les automates linéairement bornés. Les grammaires contextuelles ont été décrites par Noam Chomsky. Ce sont les grammaires de type 1 dans la hiérarchie de Chomsky.