Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this thesis, we present a Riemannian framework for the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Here, the high-dimensionality refers to the size of the search space, while the cost function is scalar-valued. Such problems arise, for example, in the reconstruction of high-dimensional data sets and in the solution of parameter dependent partial differential equations. As the degrees of freedom grow exponentially with the number of dimensions, the so-called curse of dimensionality, directly solving the optimization problem is computationally unfeasible even for moderately high-dimensional problems. We constrain the optimization problem by assuming a low-rank tensor structure of the solution; drastically reducing the degrees of freedom. We reformulate this constrained optimization as an optimization problem on a manifold using the smooth embedded Riemannian manifold structure of the low-rank representations of the Tucker and tensor train formats. Exploiting this smooth structure, we derive efficient gradient-based optimization algorithms. In particular, we propose Riemannian conjugate gradient schemes for the solution of the tensor completion problem, where we aim to reconstruct a high-dimensional data set for which the vast majority of entries is unknown. For the solution of linear systems, we show how we can precondition the Riemannian gradient and leverage second-order information in an approximate Newton scheme. Finally, we describe a preconditioned alternating optimization scheme with subspace correction for the solution of high-dimensional symmetric eigenvalue problems.