Alternating series testIn mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test. A series of the form where either all an are positive or all an are negative, is called an alternating series.
Optical propertiesThe optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics, a subfield of optics. The optical properties of matter include: Refractive index Dispersion Transmittance and Transmission coefficient Absorption Scattering Turbidity Reflectance and Reflectivity (reflection coefficient) Albedo Perceived color Fluorescence Phosphorescence Photoluminescence Optical bistability Dichroism Birefringence Optical activity Photosensitivity A basic distinction is between isotropic materials, which exhibit the same properties regardless of the direction of the light, and anisotropic ones, which exhibit different properties when light passes through them in different directions.
Abel's testIn mathematics, Abel's test (also known as Abel's criterion) is a method of testing for the convergence of an infinite series. The test is named after mathematician Niels Henrik Abel. There are two slightly different versions of Abel's test – one is used with series of real numbers, and the other is used with power series in complex analysis. Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions dependent on parameters.
Faisceau de BesselUn faisceau de Bessel est un champ de radiations électromagnétiques, acoustiques ou gravitationnelles dont l'amplitude suit une fonction de Bessel de première espèce. Pour le faisceau de Bessel d'ordre zéro, l'amplitude est maximale à l'origine, alors qu'un faisceau de plus grand ordre présente une singularité de phase axiale à l'origine où l'amplitude s'annule tel que la fonction le démontre. Un vrai faisceau de Bessel ne diffracte pas, au contraire du comportement habituel des ondes sonores ou lumineuses qui se dispersent lorsqu'elles sont focalisées.