German orthographyGerman orthography is the orthography used in writing the German language, which is largely phonemic. However, it shows many instances of spellings that are historic or analogous to other spellings rather than phonemic. The pronunciation of almost every word can be derived from its spelling once the spelling rules are known, but the opposite is not generally the case. Today, Standard High German orthography is regulated by the Rat für deutsche Rechtschreibung (Council for German Orthography), composed of representatives from most German-speaking countries.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Arbre de décisionvignette| Arbre de décision Un arbre de décision est un outil d'aide à la décision représentant un ensemble de choix sous la forme graphique d'un arbre. Les différentes décisions possibles sont situées aux extrémités des branches (les « feuilles » de l'arbre), et sont atteintes en fonction de décisions prises à chaque étape. L'arbre de décision est un outil utilisé dans des domaines variés tels que la sécurité, la fouille de données, la médecine, etc. Il a l'avantage d'être lisible et rapide à exécuter.
Algorithme de ViterbiL'algorithme de Viterbi, d'Andrew Viterbi, permet de corriger, dans une certaine mesure, les erreurs survenues lors d'une transmission à travers un canal bruité. Son utilisation s'appuie sur la connaissance du canal bruité, c'est-à-dire la probabilité qu'une information ait été modifiée en une autre, et permet de simplifier radicalement la complexité de la recherche du message d'origine le plus probable. D'exponentielle, cette complexité devient linéaire.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Langue écritethumb|right|Exemples de fontes de caractères employées pour noter différentes langues, par William Caslon, fondeur-typographe, dans la Cyclopaedia (1728). Une langue écrite est une langue dotée d'une représentation au moyen d’un système d’écriture. La langue écrite est une invention (technique) dans la mesure où elle doit être enseignée aux enfants ; les enfants apprendront la langue parlée (langue orale ou langue des signes) en y étant exposés et sans vraiment qu’on la leur ait apprise.
Compétence et performanceL'opposition théorique entre compétence et performance est une hypothèse de Noam Chomsky dans le cadre de la linguistique générative. Publiée initialement en 1965 dans Aspects de la théorie syntaxique, elle procède d'une réinterprétation de « l’opposition saussurienne de la langue et de la parole » et est devenue un concept classique du discours linguistique général. Elle différencie chez les générativistes la capacité de construire et reconnaître l'ensemble des énoncés grammaticalement corrects d'une part (compétence) et l'ensemble des énoncés produits d'autre part (performance).