Fixed effects modelIn statistics, a fixed effects model is a statistical model in which the model parameters are fixed or non-random quantities. This is in contrast to random effects models and mixed models in which all or some of the model parameters are random variables. In many applications including econometrics and biostatistics a fixed effects model refers to a regression model in which the group means are fixed (non-random) as opposed to a random effects model in which the group means are a random sample from a population.
Price elasticity of demandA good's price elasticity of demand (, PED) is a measure of how sensitive the quantity demanded is to its price. When the price rises, quantity demanded falls for almost any good, but it falls more for some than for others. The price elasticity gives the percentage change in quantity demanded when there is a one percent increase in price, holding everything else constant. If the elasticity is −2, that means a one percent price rise leads to a two percent decline in quantity demanded.
Cross elasticity of demandIn economics, the cross (or cross-price) elasticity of demand measures the effect of changes in the price of one good on the quantity demanded of another good. This reflects the fact that the quantity demanded of good is dependent on not only its own price (price elasticity of demand) but also the price of other "related" good. The cross elasticity of demand is calculated as the ratio between the percentage change of the quantity demanded for a good and the percentage change in the price of another good, ceteris paribus:The sign of the cross elasticity indicates the relationship between two goods.
Élasticité (économie)vignette|Elasticity-elastic En économie, l'élasticité mesure la variation d'une grandeur provoquée par la variation d'une autre grandeur. Ainsi, pour un produit donné, lorsque les volumes demandés augmentent de 15 % quand le prix de vente baisse de 10 %, l'élasticité de la demande par rapport au prix de vente est le quotient de la variation de la demande rapporté à la variation de prix de vente, soit -1,5 = (15 % / -10 %). Ici toute baisse de prix provoque une augmentation plus importante des quantités vendues.
Price elasticity of supplyThe price elasticity of supply (PES or Es) is a measure used in economics to show the responsiveness, or elasticity, of the quantity supplied of a good or service to a change in its price. Price elasticity of supply, in application, is the percentage change of the quantity supplied resulting from a 1% change in price. Alternatively, PES is the percentage change in the quantity supplied divided by the percentage change in price. When PES is less than one, the supply of the good can be described as inelastic.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Nonlinear mixed-effects modelNonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.