Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Professional video cameraA professional video camera (often called a television camera even though its use has spread beyond television) is a high-end device for creating electronic moving images (as opposed to a movie camera, that earlier recorded the images on film). Originally developed for use in television studios or with outside broadcast trucks, they are now also used for music videos, direct-to-video movies (see digital movie camera), corporate and educational videos, wedding videos, among other uses.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Camérathumb|Arrière de la caméra argentique Mitchell BNC dotée en supplément sur le côté droit d'un enregistreur vidéo analogique, utilisée par Stanley Kubrick pour pouvoir rapidement monter un "brouillon" de son film Apocalypse Now lors du tournage, avant toute opération de montage sur la pellicule photographique même. Une caméra est un appareil de prise de vues destiné à enregistrer ou à transmettre des images photographiques successives afin de restituer l'impression de mouvement pour le cinéma, la télévision, la recherche, la télésurveillance, l'imagerie industrielle et , ou bien pour d'autres applications, professionnelles ou domestiques.
Photophone (appareil)Photophone est un mot introduit en 2002 pour désigner les téléphones mobiles dont le capteur permet de prendre des photos numériques de haute capables de concurrencer celles des appareils photographiques numériques compacts. Dans cette acception, la majorité des téléphones mobiles commercialisés actuellement, smartphones et téléphones mobiles basiques (excepté les produits d'entrée de gamme) correspondent à cette définition du photophone. thumb|Sony Ericsson K800i, l'un des premiers téléphones portables à être équipé d'un capteur de 3,2 mégapixels.
Appareil photographique numériqueUn appareil photographique numérique (ou APN) est un appareil photographique qui recueille la lumière sur un capteur photographique électronique, plutôt que sur une pellicule photographique, et qui convertit l'information reçue par ce support pour la coder numériquement. Un appareil photo numérique utilise un capteur CCD ou CMOS pour acquérir les images, et les enregistre habituellement sur des cartes mémoire (CompactFlash, SmartMedia, Memory Stick, Secure Digital, etc.).
Perceptron multicoucheEn intelligence artificielle, plus précisément en apprentissage automatique, le perceptron multicouche (multilayer perceptron MLP en anglais) est un type de réseau neuronal artificiel organisé en plusieurs couches. Un perceptron multicouche possède au moins trois couches : une couche d'entrée, au moins une couche cachée, et une couche de sortie. Chaque couche est constituée d'un nombre (potentiellement différent) de neurones. L'information circule de la couche d'entrée vers la couche de sortie uniquement : il s'agit donc d'un réseau à propagation directe (feedforward).
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.