Publication

Explaining Morphological and Electrical Features of Boron-doped Zinc Oxide to Tailor New Electrodes for Photovoltaics

Lorenzo Fanni
2016
Thèse EPFL
Résumé

TCOs are a class of metal oxides that combine transparency to visible light with electrical conductivity. Each TCO is characterized by the trade-off of these two properties which can be tuned for a particular application. This thesis is dedicated to the investigation of one TCO material: boron doped zinc oxide (ZnO:B) deposited by low-pressure chemical vapor deposition (LP-MOCVD). Its main distinction is low absorptance which makes ZnO films deposited by LP-MOCVD ideal as transparent electrodes in thin-film solar cells. Although ZnO:B properties have previously been optimized for this application, the exact processes behind the film formation have not been fully described. This thesis substantially clarifies the processes of the film nucleation and growth evolution, and the mechanisms of incorporation of the B atoms into the ZnO. First, for non-intentionally doped ZnO we establish that the main deposition parameters influencing the film properties are the deposition temperature, the gas precursor ratio and the total gas flow. We experimented with these three parameters across a wide range of parameter values. The films deposited were characterized at different stages of their growth using atomic force microscopy, X-ray diffraction and automated crystallographic orientation mapping. These data reveal the dependence of the film preferential orientation on the deposition conditions. We propose a model based on the adsorbed atom mean free path to explain this dependence. Using deposition parameters learnt from this model, we control the preferential orientation during film growth to increase the grain sizes. Second, we analyze the conductivity to B-doped ZnO films. Boron atoms act as electron donors in ZnO, increasing the electrical conductivity and decreasing the transparency. This work quantifies how the B concentration and spatial distribution affect the film conductivity. Quantification of the B atoms incorporated in the film was performed using nuclear reaction analysis. We found that a high level of O precursor gas favors B incorporation in the film. Combining nano secondary ion mass spectroscopy and Kelvin probe force microscopy we demonstrate that the dopant atoms incorporate in only one of the two sides of each grain. This is a new observation because dopant atoms are commonly assumed to be uniformly distributed in the film. The transparency and electrical conductivity of ZnO depend also on the carrier mobility. The sources of carrier scattering are investigated for intrinsic (i.e. O vacancies and Zn interstitials) and extrinsic (B atoms) impurity concentrations. We observed that for the same B concentration the source of electron scattering depends on the concentration of intrinsic defects: for films with a lower concentration of intrinsic defects, the main source of scattering is the grain boundaries; for films with a higher concentration of intrinsic defects, the main sources are the mechanisms happening in the crystalline region. Finally, LP-MOCVD ZnO:B films were optimized using the previous results and successfully applied in four different types of solar cells: amorphous/microcrystalline silicon, amorphous silicon, copper indium gallium selenide and silicon heterojunction. The advantages of the developed films to these four cells include the simplification of the fabrication process, the reduction of reflectance and parasitic absorption, and a better understanding of carrier transport mechanisms through the device.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Cellule CIGS
Le sigle CIGS (pour les éléments chimiques cuivre, indium, gallium et sélénium) désigne à la fois : une technique d'élaboration des cellules photovoltaïques en couches minces et de haute performance. le matériau semiconducteur fait d'un alliage permettant de réaliser ces cellules. Dans le CIGS, la concentration d'indium et de gallium peut varier entre du séléniure de cuivre et d'indium (CIS) pur, et du séléniure de cuivre et de gallium (CGS) pur. C’est un semi-conducteur à structure de chalcopyrite.
Crystalline silicon
Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Silicium amorphe
Le silicium amorphe, généralement abrégé a-Si, est la variété allotropique non cristallisée du silicium, c’est-à-dire dans lequel les atomes sont désordonnés et ne sont pas rangés de façon régulière définissant une structure cristalline. Le silicium amorphe peut être déposé en couches minces à basse température sur un grand nombre de substrats, permettant d'envisager une grande variété d'applications microélectroniques. Ce matériau semi-conducteur est couramment utilisé pour réaliser certains panneaux solaires photovoltaïques.
Afficher plus
Publications associées (309)

Font Side Solutions for c-Si Solar Cells with High-Temperature Passivating Contacts

Ezgi Genç

In this work, we studied the potential of using thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) for two main purposes: introducing an n-type passivating contact at the front of a TOPCon solar cell, or simplifying the fabrication o ...
EPFL2024

Piezoelectric and elastic properties of Al0.60Sc0.40N thin films deposited on patterned metal electrodes

Luis Guillermo Villanueva Torrijo, Silvan Stettler, Marco Liffredo, Nan Xu, Federico Peretti

Sc-doped aluminum nitride (AlScN) allows for piezoelectric devices with large electromechanical coupling and the benefits increase with larger Sc doping in the film. However, with a larger Sc concentration, the process window narrows, and it is necessary t ...
2024

Colloidal Atomic Layer Deposition on Nanocrystals Using Ligand-Modified Precursors

Raffaella Buonsanti, Anna Loiudice, Krishna Kumar, Ona Segura Lecina, Petru Pasquale Albertini, Philippe Benjamin Green, Coline Marie Agathe Boulanger, Jari Leemans, Mark Adrian Newton

Atomic layer deposition (ALD) is a method to grow thin metal oxide layers on a variety of materials for applications spanning from electronics to catalysis. Extending ALD to colloidally stable nanocrystals promises to combine the benefits of thin metal oxi ...
Amer Chemical Soc2024
Afficher plus
MOOCs associés (4)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.