Intrinsic structural transitions of the pyramidal I < c plus a > dislocation in magnesium
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The industrial applications of Mg, the lightest structural metal, and abundant in Earth's crust, are hampered by its low intrinsic ductility and low fracture toughness at room temperature which is attributed to the underlying less symmetric and plastically ...
Solute accelerated cross-slip of pyramidal < c + a > screw dislocations has recently been recognized as a crucial mechanism in enhancing the ductility of solid-solution Mg alloys. In pure Mg, cross-slip is ineffective owing to the energy difference between ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
The body centered cubic (BCC) high entropy alloys (HEAs) MoNbTaW and MoNbTaVW show exceptional strength retention up to 1900K. The mechanistic origin of the retained strength is unknown yet is crucial for finding the best alloys across the immense space of ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Random body-centered-cubic (BCC) "High Entropy" alloys are a new class of alloys, some having high strength and good ductility at room temperature and some having exceptional high-temperature strength. There are no theories of strengthening of screw disloc ...
Dislocation multiplication in plasticity research is often connected to the picture of a Frank-Read source. Although it is known that this picture is not applicable after easy glide deformation, plasticity theories often assume Frank-Read-type models for d ...
The dissociation of methane on transition metal surfaces is not only of fundamental interest but also of industrial importance as it represents a rate-controlling step in the steam-reforming reaction used commercially to produce hydrogen. Recently, a speci ...
Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an important task for the physically meaningful description of stage II hardening in face centered cubic crystalline materials. In recent Discrete Dislocation Dyn ...
The thermally activated pyramidal-to-basal (PB) transition of (c + a) dislocations, transforming glissile pyramidal dissociated core structures into sessile basal dissociated ones, lies at the origin of low ductility in pure magnesium (Mg). Solute-accelera ...