Système CGSLe système CGS est un système d'unités de mesure des grandeurs physiques, où les unités de base de la mécanique sont le centimètre (pour les longueurs), le gramme (pour les masses) et la seconde (pour les temps). Pour les unités électriques et magnétiques, il existe plusieurs variantes, dont le système CGS-UES (électrostatique), le système CGS-UEM (électromagnétique), le système d'unités de Gauss et le . Le système CGS est proposé par la British Association for the Advancement of Science en 1874.
Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
History of the metric systemThe history of the metric system began during the Age of Enlightenment with measures of length and weight derived from nature, along with their decimal multiples and fractions. The system became the standard of France and Europe within half a century. Other measures with unity ratios were added, and the system went on to be adopted across the world. The first practical realisation of the metric system came in 1799, during the French Revolution, after the existing system of measures had become impractical for trade, and was replaced by a decimal system based on the kilogram and the metre.
Complex torusIn mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.